Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 11(8): 18, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35980669

RESUMO

Purpose: Cytotoxic agents such as mitomycin C (MMC) are part of the mainstay treatment for limiting subconjunctival scarring following glaucoma filtration surgery (GFS). However, a safer antifibrotic therapy is clinically needed. The anti-scarring properties of 3',4'-dihydroxyflavonol (DiOHF) were evaluated in a mouse model of GFS and in cultured human Tenon's fibroblasts (HTFs). Methods: GFS was performed in C57BL/6 mice receiving daily intraperitoneal injections of DiOHF or vehicle or a single intraoperative injection of MMC. Eyes were harvested on day 14 for assessment of collagen deposition, expression of alpha-smooth muscle actin (α-SMA), cluster of differentiation 31 (CD31), and 4-hydroxy-2-nonenal (4HNE) in the conjunctiva/Tenon's layer. The inhibitory effects of DiOHF on transforming growth factor ß (TGFß)-induced responses were also assessed in HTFs. Results: Treatment with DiOHF demonstrated a reduction in collagen deposition at the GFS site compared to vehicle-treated mice. The degree of 4HNE-positive fluorescence was significantly reduced in DiOHF-treated eyes compared to the other groups, indicating a decrease in oxidative stress. A reduction in expression of α-SMA and CD31 was seen in DiOHF-treated conjunctiva compared to those treated with vehicle. Concordant results were demonstrated in cultured HTFs in vitro. Furthermore, treatment of cultured HTFs with DiOHF also displayed a reduction in the proliferation, migration, and contractility of HTFs. Conclusions: Treatment with DiOHF reduces scarring and angiogenesis in the conjunctiva of mice with GFS at a level comparable to MMC. The reduction in oxidative stress suggests that DiOHF may suppress scarring via different mechanisms from MMC. Translational Relevance: DiOHF may be a safer and superior wound modulating agent than conventional antifibrotic therapy in GFS.


Assuntos
Cirurgia Filtrante , Glaucoma , Animais , Colágeno/metabolismo , Colágeno/farmacologia , Modelos Animais de Doenças , Fibroblastos/metabolismo , Flavonóis , Glaucoma/tratamento farmacológico , Glaucoma/cirurgia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitomicina/metabolismo , Mitomicina/farmacologia , Mitomicina/uso terapêutico , Cápsula de Tenon/metabolismo
2.
Antioxidants (Basel) ; 9(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202904

RESUMO

Collagen accumulation in sub-conjunctival tissue at the surgical wound is one of the major complications associated with glaucoma filtration surgery (GFS). This process often leads to unwanted fibrotic scar formation at the lesion site and dysfunction of tissues. Previously, we demonstrated that NADPH oxidase 4 (Nox4) is implicated in transforming growth factor-beta (TGFß)-induced collagen production in ocular fibroblasts and scarring responses in a mouse model of corneal injury. Here, we propose that Nox4 is an important facilitator of TGFß-induced responses. We tested this hypothesis in human Tenon's fibroblasts (HTF) and also assessed a role of Nox4 in an experimental mouse model of GFS. TGFß1 induced Nox4 mRNA expression but downregulated Nox5 in HTF. Targeting Nox4 gene expression with an adenovirus carrying a Nox4 small interfering RNA (siRNA) (Ad-Nox4i) or removal of hydrogen peroxide (H2O2) with EUK-134 (25 µM) in HTFs significantly reduced TGFß1-induced Nox4 expression, H2O2 production, and collagen synthesis (p < 0.05, n = 3-6). SIS3 (5 µM) that prevents Smad3 phosphorylation is found to suppress TGFß1-induced collagen production in HTFs. Furthermore, Ad-Nox4i and EUK-134 both abolished TGFß1-stimulated proliferation of HTFs. We also compared collagen deposition at the wound arising from GFS between wildtype (WT) and Nox4 knockout (KO) mice. Both collagen deposition and fibrovascularization at the wound were significantly decreased in Nox4 KO mice at 14 days after GFS. Our results provide comprehensive evidence that Nox4 is an important mediator for TGFß1-induced responses in HTFs and collagen deposition in surgical wound following GFS in mice. As such, pharmacological inhibition of Nox4 would be a viable therapeutic strategy for the control of scarring after glaucoma surgery.

3.
Invest Ophthalmol Vis Sci ; 61(12): 20, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33079994

RESUMO

Purpose: Corneal injury that occurs after burning with alkali initiates wound-healing processes, including inflammation, neovascularization, and fibrosis. Excessive reactions to injury can reduce corneal transparency and thereby compromise vision. The NADPH oxidase (Nox) enzyme complex is known to be involved in cell signaling for wound-healing angiogenesis, but its role in corneal neovascularization has been little studied. Methods: The center corneas of wild-type and Nox4 knockout (KO) mice were injured with 3 µL 1 M NaOH, while the contralateral corneas remained untouched. On day 7, mRNA expression levels of NADPH oxidase isoforms, the proangiogenic factors VEGF-A and TGFß1, and proinflammatory genes ICAM-1 and VCAM-1 were determined. Corneal neovascularization and fibrosis were visualized using PECAM-1 antibody and picrosirius red staining, respectively, on the same day. Results: Expressions of both Nox2 and Nox4 gene isoforms as well as the above genes were markedly increased in the injured corneas at 7 days. Injured corneas showed neovascularization and fibrosis as well as an increase in clinical opacity score. All responses stimulated by alkali burn were abrogated in Nox4 KO mice. Conclusions: Nox4 could be a new target to treat pathologic corneal wound-healing responses and such targeting might prevent blindness caused by burn injuries.


Assuntos
Queimaduras Químicas/enzimologia , Lesões da Córnea/enzimologia , Queimaduras Oculares/induzido quimicamente , NADPH Oxidase 4/metabolismo , Cicatrização/fisiologia , Animais , Regulação Enzimológica da Expressão Gênica/fisiologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/genética , Reação em Cadeia da Polimerase em Tempo Real , Hidróxido de Sódio , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Invest Ophthalmol Vis Sci ; 58(7): 3011-3017, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28605812

RESUMO

Purpose: Fibrotic scarring after ocular surgeries and chemical burn injuries can impede clarity of the cornea and cause vision impairment. Transforming growth factor ß (TGFß) signaling pathway is known to mediate fibrotic scarring, and NADPH oxidase-derived reactive oxygen species has been shown to be an effector molecule that facilitates TGFß1-mediated responses. The present study explores the expression profile and functional importance of NADPH oxidase (Nox) in conjunctival fibroblasts. In addition, the effect of curcumin on the TGFß1-induced NADPH oxidase expression and collagen synthesis was also investigated. Methods: The mRNA expression of Nox isoforms in rabbit conjunctival fibroblasts was measured by real-time PCR. The production of hydrogen peroxide (H2O2) and total collagen by these cells was measured by Amplex Red assay and Picro-Sirius red assay, respectively. Nox4 was knocked down by adenovirus-mediated siRNA targeting Nox4 (Adv-Nox4i). Results: We describe for the first time that conjunctival fibroblasts express mRNA encoding for Nox2, Nox3, Nox4, and Nox5. TGFß1 was found to induce Nox4 mRNA expression and total collagen release by these cells (P < 0.05; n = 4), and both responses are blocked by Smad3 inhibitor SIS3. Suppressing Nox4 gene transcription with Adv-Nox4i completely attenuated TGFß1-stimulated H2O2 release and collagen production by conjunctival fibroblasts (P < 0.05; n = 4-6). Similarly, curcumin also inhibited TGFß1-induced Smad3 phosphorylation, Nox4-derived H2O2 production, and total collagen synthesis by conjunctival fibroblasts (P < 0.05; n = 4-6). Conclusions: The present study suggests that TGFß1-mediated production of collagen by conjunctival fibroblasts involves Nox4-derived H2O2 pathway and this effect of Nox4 is abrogated by curcumin. This mechanism might be exploited to prevent fibrotic scarring after surgeries and chemical burn injuries in the eye.


Assuntos
Túnica Conjuntiva/metabolismo , Doenças da Túnica Conjuntiva/genética , Regulação da Expressão Gênica , NADPH Oxidases/genética , RNA Mensageiro/genética , Fator de Crescimento Transformador beta1/farmacologia , Animais , Western Blotting , Células Cultivadas , Túnica Conjuntiva/efeitos dos fármacos , Túnica Conjuntiva/patologia , Doenças da Túnica Conjuntiva/tratamento farmacológico , Doenças da Túnica Conjuntiva/metabolismo , Fibroblastos/metabolismo , Fibrose/tratamento farmacológico , Fibrose/genética , Fibrose/metabolismo , NADPH Oxidase 4 , NADPH Oxidases/biossíntese , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Espectrofotometria
5.
Front Physiol ; 8: 150, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386230

RESUMO

Introduction: Endothelial progenitor cells (EPCs) display a unique ability to promote angiogenesis and restore endothelial function in injured blood vessels. NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H2O2) serves as a signaling molecule and promotes endothelial cell proliferation and migration as well as protecting against cell death. However, the role of NOX4 in EPC function is not completely understood. Methods: EPCs were isolated from human saphenous vein and mammary artery discarded during bypass surgery. NOX4 gene and protein expression in EPCs were measured by real time-PCR and Western blot analysis respectively. NOX4 gene expression was inhibited using an adenoviral vector expressing human NOX4 shRNA (Ad-NOX4i). H2O2 production was measured by Amplex red assay. EPC migration was evaluated using a transwell migration assay. EPC proliferation and viability were measured using trypan blue counts. Results: Inhibition of NOX4 using Ad-NOX4i reduced Nox4 gene and protein expression as well as H2O2 formation in EPCs. Inhibition of NOX4-derived H2O2 decreased both proliferation and migration of EPCs. Interestingly, pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) decreased NOX4 expression and reduced survival of EPCs. However, the survival of EPCs was further diminished by TNF-α in NOX4-knockdown cells, suggesting that NOX4 has a protective role in EPCs. Conclusion: These findings suggest that NOX4-type NADPH oxidase is important for proliferation and migration functions of EPCs and protects against pro-inflammatory cytokine induced EPC death. These properties of NOX4 may facilitate the efficient function of EPCs which is vital for successful neovascularization.

6.
J Cell Mol Med ; 20(10): 1932-44, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27297729

RESUMO

Histone deacetylase (HDAC) inhibitors are known to suppress abnormal development of blood vessels. Angiogenic activity in endothelial cells depends upon NADPH oxidase 4 (Nox4)-dependent redox signalling. We set out to study whether the HDAC inhibitor trichostatin A (TSA) affects Nox4 expression and angiogenesis. Nox4 expression was measured by real time PCR and Western blot analysis in endothelial cells. Hydrogen peroxide (H2 O2 ) was measured by amplex(®) red assay in endothelial cells. Nox4 was knocked down by Nox4 shRNA. In vitro angiogenic activities such migration and tubulogenesis were assessed using wound healing and Matrigel assays, respectively. In vivo angiogenic activity was assessed using subcutaneous sponge assay in C57Bl/6 and Nox4-deficient mice. Trichostatin A reduced Nox4 expression in a time- and concentration-dependent manner. Both TSA and Nox4 silencing decreased Nox4 protein and H2 O2 . Mechanistically, TSA reduced expression of Nox4 via ubiquitination of p300- histone acetyltransferase (p300-HAT). Thus, blocking of the ubiquitination pathway using an inhibitor of ubiquitin-activating enzyme E1 (PYR-41) prevented TSA inhibition of Nox4 expression. Trichostatin A also reduced migration and tube formation, and these effects were not observed in Nox4-deficient endothelial cells. Finally, transforming growth factor beta1 (TGFß1) enhanced angiogenesis in sponge model in C57BL/6 mice. This response to TGFß1 was substantially reduced in Nox4-deficient mice. Similarly intraperitoneal infusion of TSA (1 mg/kg) also suppressed TGFß1-induced angiogenesis in C57BL/6 mice. Trichostatin A reduces Nox4 expression and angiogenesis via inhibition of the p300-HAT-dependent pathway. This mechanism might be exploited to prevent aberrant angiogenesis in diabetic retinopathy, complicated vascular tumours and malformations.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , NADPH Oxidases/antagonistas & inibidores , Neovascularização Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Capilares/efeitos dos fármacos , Capilares/metabolismo , Movimento Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Modelos Biológicos , NADPH Oxidase 4 , NADPH Oxidases/metabolismo , Oxirredução/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Ubiquitinação/efeitos dos fármacos , Fatores de Transcrição de p300-CBP/metabolismo
7.
Clin Sci (Lond) ; 130(9): 683-96, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26814205

RESUMO

Corneal neovascularization, the growth of new blood vessels in the cornea, is a leading cause of vision impairment after corneal injury. Neovascularization typically occurs in response to corneal injury such as that caused by infection, physical trauma, chemical burns or in the setting of corneal transplant rejection. The NADPH oxidase enzyme complex is involved in cell signalling for wound-healing angiogenesis, but its role in corneal neovascularization has not been studied. We have now analysed the role of the Nox2 isoform of NADPH oxidase in corneal neovascularization in mice following chemical injury. C57BL/6 mice aged 8-14 weeks were cauterized with an applicator coated with 75% silver nitrate and 25% potassium nitrate for 8 s. Neovascularization extending radially from limbal vessels was observed in corneal whole-mounts from cauterized wild type mice and CD31+ vessels were identified in cauterized corneal sections at day 7. In contrast, in Nox2 knockout (Nox2 KO) mice vascular endothelial growth factor-A (Vegf-A), Flt1 mRNA expression, and the extent of corneal neovascularization were all markedly reduced compared with their wild type controls. The accumulation of Iba-1+ microglia and macrophages in the cornea was significantly less in Nox2 KO than in wild type mice. In conclusion, we have demonstrated that Nox2 is implicated in the inflammatory and neovascular response to corneal chemical injury in mice and clearly VEGF is a mediator of this effect. This work raises the possibility that therapies targeting Nox2 may have potential for suppressing corneal neovascularization and inflammation in humans.


Assuntos
Neovascularização da Córnea/induzido quimicamente , Neovascularização da Córnea/enzimologia , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Animais , Biomarcadores/metabolismo , Queimaduras/enzimologia , Queimaduras/patologia , Cauterização , Córnea/metabolismo , Córnea/patologia , Neovascularização da Córnea/genética , Neovascularização da Córnea/patologia , Regulação da Expressão Gênica , Imuno-Histoquímica , Inflamação/patologia , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
J Tissue Eng Regen Med ; 10(3): E167-76, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23897831

RESUMO

Adipose-derived stem cells (ASCs) show great potentials in applications such as therapeutic angiogenesis, regenerative medicine and tissue engineering. Pharmacological preconditioning of stem cells to boost the release of cytoprotective factors may represent an effective way to enhance their therapeutic efficacy. In this study, the aim was to determine whether deferoxamine can enhance the release of vascular endothelial growth factor (VEGF) from in vitro expanded ASCs. It is demonstrated that deferoxamine (50-300 µm) upregulated VEGF expression in a concentration- and time-dependent fashion. At the concentrations used, deferoxamine did not show any cytotoxic effects. The stimulatory effect of deferoxamine on VEGF expression was mediated by augmentation of hypoxia inducible factor-1 in ASCs, but independent of its antioxidant properties. Moreover, deferoxamine enhanced the paracrine effects of ASCs in promoting the regenerative functions of endothelial cells (migration and in vitro wound healing activities). This study provides evidence that deferoxamine might be a useful drug with low cell toxicity for pharmacological preconditioning of ASCs to enhance their capacity of VEGF production.


Assuntos
Tecido Adiposo/citologia , Desferroxamina/farmacologia , Comunicação Parácrina/efeitos dos fármacos , Células-Tronco/citologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Cobalto/farmacologia , Meios de Cultivo Condicionados/farmacologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
9.
Breast Cancer Res Treat ; 150(3): 523-34, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25794772

RESUMO

Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H2O2) have been implicated in development and progression of breast cancer. In the present study, we have evaluated the effects of the superoxide dismutase (SOD) mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 on superoxide and H2O2 formation as well as proliferation, adhesion, and migration of MCF-7 and MDA-MB-231 cells. Superoxide and H2O2 production was examined using dihydroethidium and Amplex red assays, respectively. Cell viability and adhesion were measured using a tetrazolium-based MTT assay. Cell proliferation was determined using trypan blue assay. Cell cycle progression was analyzed using flow cytometry. Clonal expansion of a single cell was performed using a colony formation assay. Cell migration was measured using transwell migration assay. Dual luciferase assay was used to determine NF-κB reporter activity. EUK 134 effectively reduced both superoxide and H2O2, whereas MnTmPyP removed superoxide but enhanced H2O2 formation. EUK 134 effectively attenuated viability, proliferation, clonal expansion, adhesion, and migration of MCF-7 and MDA-MB-231 cells. In contrast, MnTmPyP only reduced clonal expansion of MCF-7 and MDA-MB-231 cells but had no effect on adhesion and cell cycle progression. Tumor necrosis factor-alpha-induced NF-κB activity was reduced by EUK 134, whereas MnTmPyP enhanced this activity. These data indicate that the SOD mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 exert differential effects on breast cancer cell growth. Inhibition of H2O2 signaling using EUK 134-like compound might be a promising approach to breast cancer therapy.


Assuntos
Antioxidantes/farmacologia , Neoplasias da Mama/metabolismo , Peróxido de Hidrogênio/metabolismo , Metaloporfirinas/farmacologia , Compostos Organometálicos/farmacologia , Salicilatos/farmacologia , Superóxidos/metabolismo , Neoplasias da Mama/tratamento farmacológico , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Naunyn Schmiedebergs Arch Pharmacol ; 388(3): 319-26, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25428269

RESUMO

NADPH oxidase-derived reactive oxygen species are important for various cellular functions, including proliferation. Endothelial cells predominantly express the Nox4 isoform of NADPH oxidase, but it is not entirely clear how it is regulated. In this study, we investigated the signalling pathways involved in transforming growth factor-ß1 (TGF-ß1)-induced Nox4 expression and the proliferation of human microvascular endothelial cells (HMECs). TGF-ß1 stimulated Nox4 messenger RNA and protein expression in HMECs. TGF-ß1-induced Nox4 also increased hydrogen peroxide production, which was inhibited by diphenyleneiodonium and EUK134. The acute treatment of HMECs with TGF-ß1 enhanced the phosphorylation of Smad2 and extracellular signal-regulated kinase (ERK) 1/2, without affecting p38MAPK, Akt, or Jun N-terminal kinase 1/2 (JNK1/2) pathways. Further, inhibition of Smad2 signalling using an inhibitor of activin receptor-linked kinase 5 SB431542 reduced TGF-ß1-induced Nox4 expression, while inhibition of ERK1/2 with the inhibitor of mitogen-activated protein kinase kinase 1/2 U0126 decreased both basal and TGF-ß1-induced Nox4 expression. Inhibition of ERK1/2 phosphorylation with U0126 did not affect Smad2 phosphorylation. Finally, TGF-ß1 enhanced endothelial cell proliferation, which was reduced by U0126 but not by SB431542. These findings suggest that the non-canonical pathway ERK1/2 regulates Nox4 expression and may be involved in TGF-ß1-induced proliferation of endothelial cells, which is vital during angiogenesis and vascular development.


Assuntos
Células Endoteliais/efeitos dos fármacos , NADPH Oxidases/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NADPH Oxidase 4 , NADPH Oxidases/genética , RNA Mensageiro/metabolismo , Proteínas Smad/metabolismo
12.
J Cell Mol Med ; 18(6): 1172-83, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24629065

RESUMO

Angiogenesis, the formation of new blood vessels, is a key physiological event in organ development and tissue responses to hypoxia but is also involved in pathophysiologies such as tumour growth and retinopathies. Understanding the molecular mechanisms involved is important to design strategies for therapeutic intervention. One important regulator of angiogenesis is transforming growth factor-ß1 (TGF-ß1). In addition, reactive oxygen species (ROS) and the ROS-forming NADPH oxidase type 4 (Nox4) have been implicated as additional regulators such as during hypoxia. Here, we show that both processes are indeed mechanistically linked. TGF-ß1-stimulated Nox4 expression and ROS formation in endothelial cells. In cells from Nox4-deficient mice, TGF-ß1-induced cell proliferation, migration and tube formation were abolished. In vivo, TGF-ß1 stimulated growth of blood vessels into sponges implanted subcutaneously, and this angiogenesis was markedly reduced in Nox4 knockout mice. Thus, endothelial cells are regulated by a TGF-ß1 signalling pathway involving Nox4-derived ROS to promote angiogenesis. In order to abrogate pathological angiogenesis triggered by a multitude of factors, such as TGF-ß1 and hypoxia, Nox4 may thus be an ideal therapeutic target.


Assuntos
NADPH Oxidases/fisiologia , Neovascularização Fisiológica , Fator de Crescimento Transformador beta1/metabolismo , Animais , Western Blotting , Células Cultivadas , Feminino , Humanos , Técnicas In Vitro , Camundongos , Camundongos Knockout , NADPH Oxidase 4 , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Cicatrização
13.
Antioxid Redox Signal ; 20(17): 2710-25, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24450852

RESUMO

AIMS: Prostacyclin (PGI2) that is released from the vascular endothelium plays an important role in vasodilatation and thrombo-resistance, and it has long been suspected to protect cell survival. How it does so has never been clear. Recently, it has been shown that the NADPH oxidase 4 (Nox4) improves endothelial cell functions and promotes angiogenesis in vivo, but it was not known how to boost Nox4 therapeutically to exploit its protective functions in the vasculature. Here, we identified such a stimulus. RESULTS: The selective and stable prostacyclin receptor (IP-R) agonist cicaprost increases the expression of Nox4 in human endothelial cells of several types, including endothelial progenitor cells. The elevation of cellular cyclic-AMP increased Nox4 expression and H2O2 production and prevented endothelial cell apoptosis. We delineate the intracellular signaling that promotes cytoprotection: Cicaprost acts via the IP-R/protein kinase A (PKA)/cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein pathway. Importantly, the up-regulation of Nox4 by cicaprost also enhanced endothelial cell proliferation, migration, and angiogenesis, with all effects being substantially decreased by Nox4 gene silencing. Finally, cicaprost enhanced the growth of blood vessels into subcutaneous sponges implanted in mice, an effect that was also blocked by Nox4 gene silencing. INNOVATION: The prostacyclin analogue cicaprost induces Nox4 via IP receptor-cAMP/PKA/CREB pathway. The activation of this pathway protects endothelial cells and enhances pro-angiogenic activity both in vitro and in vivo. CONCLUSION: Prostacyclin promotes the up-regulation of Nox4 in endothelial cells, which opens up a novel strategy that protects and enhances endothelial cell functions in cardiovascular disease, such as repair after myocardial infarction or other ischemic conditions.


Assuntos
Epoprostenol/biossíntese , Infarto do Miocárdio/genética , NADPH Oxidases/biossíntese , Neovascularização Fisiológica/genética , Animais , Apoptose/efeitos dos fármacos , Citoproteção/genética , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Epoprostenol/administração & dosagem , Epoprostenol/análogos & derivados , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/administração & dosagem , Peróxido de Hidrogênio/metabolismo , Camundongos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , NADPH Oxidase 4 , NADPH Oxidases/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
14.
PLoS One ; 8(4): e60790, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637767

RESUMO

The anti-inflammatory peptide annexin-1 binds to formyl peptide receptors (FPR) but little is known about its mechanism of action in the vasculature. Here we investigate the effect of annexin peptide Ac2-26 on NADPH oxidase activity induced by tumour necrosis factor alpha (TNFα) in human endothelial cells. Superoxide release and intracellular reactive oxygen species (ROS) production from NADPH oxidase was measured with lucigenin-enhanced chemiluminescence and 2',7'-dichlorodihydrofluorescein diacetate, respectively. Expression of NADPH oxidase subunits and intracellular cell adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) were determined by real-time PCR and Western blot analysis. Promoter activity of nuclear factor kappa B (NFκB) was measured by luciferase activity assay. TNFα stimulated NADPH-dependent superoxide release, total ROS formation and expression of ICAM-1and VCAM-1. Pre-treatment with N-terminal peptide of annexin-1 (Ac2-26, 0.5-1.5 µM) reduced all these effects, and the inhibition was blocked by the FPRL-1 antagonist WRW4. Furthermore, TNFα-induced NFκB promoter activity was attenuated by both Ac2-26 and NADPH oxidase inhibitor diphenyliodonium (DPI). Surprisingly, Nox4 gene expression was reduced by TNFα whilst expression of Nox2, p22phox and p67phox remained unchanged. Inhibition of NADPH oxidase activity by either dominant negative Rac1 (N17Rac1) or DPI significantly attenuated TNFα-induced ICAM-1and VCAM-1 expression. Ac2-26 failed to suppress further TNFα-induced expression of ICAM-1 and VCAM-1 in N17Rac1-transfected cells. Thus, Ac2-26 peptide inhibits TNFα-activated, Rac1-dependent NADPH oxidase derived ROS formation, attenuates NFκB pathways and ICAM-1 and VCAM-1 expression in endothelial cells. This suggests that Ac2-26 peptide blocks NADPH oxidase activity and has anti-inflammatory properties in the vasculature which contributes to modulate in reperfusion injury inflammation and vascular disease.


Assuntos
Anexina A1/farmacologia , Anti-Inflamatórios/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Inflamação/metabolismo , NADPH Oxidases/antagonistas & inibidores , Peptídeos/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , NADPH Oxidases/metabolismo , NF-kappa B/genética , Regiões Promotoras Genéticas , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Superóxidos/metabolismo , Ativação Transcricional/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
15.
Biochem Biophys Res Commun ; 430(3): 918-25, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23261430

RESUMO

The synthesis of extracellular matrix including collagen during wound healing responses involves signaling via reactive oxygen species (ROS). We hypothesized that NADPH oxidase isoform Nox4 facilitates the stimulatory effects of the profibrotic cytokine transforming growth factor (TGF) ß(1) on collagen production in vitro and in vivo. TGFß(1) stimulated collagen synthesis and hydrogen peroxide generation in mouse cardiac fibroblasts, and both responses were attenuated by a scavenger of superoxide and hydrogen peroxide (EUK-134). Furthermore, by expressing a dominant negative form of Nox4 (Adv-Nox4(ΔNADPH)) in fibroblasts, TGFß(1)-induced hydrogen peroxide production and collagen production were abrogated, suggesting that Nox4-dependent ROS are important for TGFß(1) signaling in collagen production. This was confirmed by the inhibitory effect of an adenovirus carrying siRNA targeting Nox4 (Adv-Nox4i) on TGFß(1)-induced collagen synthesis and expression of activated myofibroblasts marker smooth muscle alpha actin. Finally we used a mouse model of subcutaneous sponge implant to examine the role of Nox4 in the local stimulatory effects of TGFß(1) on collagen accumulation in vivo. TGFß(1)-induced collagen accumulation was significantly reduced when the sponges were instilled with Adv-Nox4(ΔNADPH). In conclusion, Nox4 acts as an intermediary in the signaling of TGFß(1) to facilitate collagen synthesis.


Assuntos
Colágeno/biossíntese , NADPH Oxidases/metabolismo , Fator de Crescimento Transformador beta1/fisiologia , Actinas/metabolismo , Animais , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 4 , NADPH Oxidases/genética , Compostos Organometálicos , Salicilatos , Transdução de Sinais , Fator de Crescimento Transformador beta1/farmacologia
16.
J Mol Cell Cardiol ; 49(2): 176-85, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20403362

RESUMO

Cardiac fibrosis is a consequence of many cardiovascular diseases and contributes to impaired ventricular function. Activation of the prostacyclin receptor (IP) protects against cardiac fibrosis, but the molecular mechanisms are not totally understood. Using mouse cardiac fibroblasts, we found that IP activation with cicaprost suppressed expression of collagen I and other target genes of transforming growth factor-beta. This effect of cicaprost was unlikely to be mediated by inhibition of the Smad2/3 or mitogen-activated protein kinase (MAPK) activities, but was associated with cAMP elevation and phosphorylation of the transcription factor cAMP response element binding protein (CREB). Expression of a non-phosphorylated CREB mutant suppressed the inhibitory effect of cicaprost. It appears that phosphorylated CREB binds to and sequestrates the transcription coactivator CBP/p300 from binding to Smad. Inhibition of the intrinsic histone acetyl-transferase activity of CBP/p300 with garcinol significantly suppressed collagen I expression in fibroblasts. Using apolipoprotein E and IP double knockout mouse, we demonstrated that endogenous prostacyclin/IP signaling had an inhibitory effect on angiotensin II-induced cardiac fibrosis under hypercholesterolemic conditions. Taken together, our results suggest that the prostacyclin/IP pathway suppresses cardiac fibrosis, at least partly, by inducing CREB phosphorylation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Receptores de Epoprostenol/metabolismo , Angiotensina II/farmacologia , Animais , Separação Celular , Colágeno/metabolismo , Regulação para Baixo/efeitos dos fármacos , Proteína p300 Associada a E1A/metabolismo , Epoprostenol/análogos & derivados , Epoprostenol/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/patologia , Fibrose , Hiperlipidemias/complicações , Hiperlipidemias/patologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Miocárdio/enzimologia , NADPH Oxidases/metabolismo , Fosforilação/efeitos dos fármacos , Receptores de Epoprostenol/deficiência , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
17.
Pharmacol Ther ; 122(2): 97-108, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19285105

RESUMO

The superoxide generating enzyme NADPH oxidase has received much attention as a major cause of oxidative stress underlying vascular disease. However, there is increasing evidence that oxidant signaling involving NADPH oxidase has other important roles in cell biology. Nox family proteins are the catalytic, electron-transporting subunits of the NADPH oxidase enzyme complex. It is now clear that reactive oxygen species (ROS) generated by NADPH oxidase participate in intracellular signaling processes that regulate cell differentiation and proliferation. These mechanisms are important in tissue repair and tumorigenesis, diverse conditions where cell proliferation is required, but when poorly controlled the generation of ROS is obviously detrimental. Indeed, NADPH oxidase-mediated cell proliferation has been observed in a wide range of cell types including those found in blood vessels, kidney, liver, skeletal muscle precursors, neonatal cardiac myocytes, lung epithelial cells, gastric mucosa, brain microglia, and a variety of cancer cells. NADPH oxidases act not as isolated elements downstream of a particular pathway, but rather may amplify multiple receptor tyrosine kinase-mediated processes by inhibiting protein tyrosine phosphatases. Therefore, NADPH oxidase-mediated redox signaling may represent a unique intracellular amplifier of diverse signaling pathways involved in tissue repair processes such as cell proliferation, wound healing, angiogenesis and fibrosis. Recent studies also suggest that NADPH oxidase is involved in differentiation of stem cells. As occurs in unresolved inflammation, however, hyperactivity of this enzyme system leads to tissue injury. Thus modulating NADPH oxidase may have significant impacts on regenerative medicine and tissue engineering, such as growing heart muscle.


Assuntos
Proliferação de Células , NADPH Oxidases/fisiologia , Engenharia Tecidual , NADPH Oxidases/metabolismo , Medicina Regenerativa , Cicatrização
18.
Free Radic Res ; 41(6): 699-712, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17516243

RESUMO

All methods used for quantitation of superoxide have limitations when it comes to differentiating between extracellular and intracellular sites of superoxide production. In the present study, we monitored dihydroethidium (DHE)-derived fluorescence at 570 nm, which indicates hydroxyethidium derived from reaction with superoxide produced by human leukemia cells (HL-60) and microvascular endothelial cells (HMEC-1). Phorbol-12-myristate 13-acetate (PMA; 100 ng/ml) caused an increase in fluorescence and lucigenin chemiluminescence in HL-60, which was abolished by superoxide dismutase (SOD; 600 U/ml) indicating that DHE detects extracellular superoxide. Furthermore, both HL-60 cells and HMEC-1 generated a fluorescence signal in the presence of DHE under resting conditions, which was unaffected by SOD, but abolished by polyethylene glycosylated-SOD (PEG-SOD) (100 U/ml) and MnTmPyP (25 microM), indicating that DHE also detects superoxide produced intracellularly. In HMEC-1, silencing of either Nox2 or Nox4 components of NADPH oxidase with small interference RNA (siRNA) resulted in a significant reduction in superoxide detected by both DHE fluorescence (Nox2 siRNA; 71 +/- 6% and Nox4 siRNA 83 +/- 7% of control) and lucigenin chemiluminescence (Nox2; 54 +/- 6% and Nox4 74 +/- 4% of control). In conclusion, DHE-derived fluorescence at 570 nm is a convenient method for detection of intracellular and extracellular superoxide produced by phagocytic and vascular NADPH oxidase.


Assuntos
Etídio/análogos & derivados , Fluorescência , NADPH Oxidases/farmacologia , Superóxidos/metabolismo , Acridinas/farmacologia , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Etídio/química , Células HL-60 , Humanos , Luminescência , Substâncias Luminescentes/farmacologia , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , RNA Interferente Pequeno/farmacologia , Superóxido Dismutase/metabolismo , Superóxidos/análise , Xantina/farmacologia , Xantina Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...